
Enumeration of Bent Boolean Functions by Reconfigurable Computer

J. L. Shafer S. W. Schneider J. T. Butler P. Stănică
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Abstract

We show that there is significant benefit to using a
reconfigurable computer to enumerate bent Boolean func-
tions for cryptographic applications. Bent functions are
rare, and the only known way to generate all bent functions
is by a sieve technique in which many prospective functions
are tested. The speed-up achieved depends on the number
of variables n; for n = 8, we show that the reconfigurable
computer achieves better than a 60,000× speed-up over a
conventional computer. Further, we introduce the transeunt
triangle as a means to reduce the number of functions that
must be considered. For n = 6, this reduction is better
than 500,000,000 to 1.

Previously, the transeunt triangle had been used only
in the design of exclusive OR logic circuits; it converts a
truth table to the algebraic normal form. However, this fact
has never been proven rigorously, and that shortcoming
is removed in this paper. Our proof provides a practical
benefit; it yields a new realization of the transeunt triangle
that has less complexity and delay. Finally, we show
computational results from a reconfigurable computer.

1. Introduction

Shannon [18] introduced the concepts of confusion and
diffusion as a fundamental technique to achieve security in
cryptographic systems. The confusion principle is reflected
in the nonlinearity of Boolean functions, since most linear
systems are easily breakable. There are various criteria
that imply nonlinearity, one of them being bentness. Bent
functions were first introduced by Rothaus in 1976 [15],
as functions having maximum distance away from the set
of affine functions.

Bent Boolean functions have the highest nonlinearity
possible, which makes them useful in the design of block
and stream ciphers. Maximum length sequences based on

bent functions have cross-correlation and autocorrelation
properties that are close to the ones of Gold and Kasami
codes [12], which have applications in spread spectrum
communication [6].

While we can mathematically define bent functions
precisely, to generate them it is a different matter. One
needs sophisticated mathematical (like invariant theory)
and computational tools to list all n-variable bent functions
(this has been achieved for n ≤ 8). Some of these methods
cannot be easily parallelized, and do not offer a significant
improvement in a reconfigurable environment.

Using the SRC-6 reconfigurable computer, we have
tested millions of Boolean functions. Specific sets of
Boolean functions were chosen based on their specific
properties, including degree, homogeneity, and symmetry.
These groups were evaluated for relationships between
nonlinearity and specific properties. The objective is to
find groups of Boolean functions that are rich in bent
functions [1]. These groups, if small enough, can be tested
exhaustively. Testing across the entire set of functions,
even for small numbers of variables, e.g., n = 6 or more,
is infeasible because of the large number of functions.
The use of the transeunt triangle enables functions to be
generated easily in one form, converted to another form and
then tested for certain characteristics. Without the transeunt
triangle [2], [4], important groups of functions could not
be tested efficiently.

2. Background and Definitions

Definition 2.1. A Boolean function f in n variables is
a map from the n-dimensional vector space Vn = Fn

2

to F2, the two-element field. For a function f , let f0 =
f(0, 0, . . . , 0), f1 = f(0, 0, . . . , 1), . . . , and f2n−1 =
f(1, 1, . . . , 1). TT = (f0 f1 . . . f2n−1) is the truth table
representation of f .

Example 2.1. f = x1x2x3x4 has the truth table rep-
resentation TT = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1). g =
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x1x2 ⊕ x3x4 has the truth table representation TT =
(0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0). (End of Example)

Definition 2.2. A linear function is the constant 0 function
or the exclusive-OR of one or more variables. An affine
function is a linear function or the complement of a linear
function.

Example 2.2. There are 16 linear functions on 4 variables,
0, x1, x2, x3, x4, x1 ⊕ x2, x1 ⊕ x3, x1 ⊕ x4, x2 ⊕ x3,
x2⊕x4, x3⊕x4, x1⊕x2⊕x3, x1⊕x2⊕x4, x1⊕x3⊕x4,
x2 ⊕ x3 ⊕ x4, and x1 ⊕ x2 ⊕ x3 ⊕ x4. These functions
and their complements comprise the 32 4-variable affine
functions. (End of Example)

Affine functions, when used in encrypting a plaintext
message, are susceptible to a linear attack. We seek
functions that are as “far” away as possible from affine
functions.

Definition 2.3. The Hamming distance d(f, g) between
two functions f and g is the number of places where their
truth table representations differ.

Definition 2.4. The nonlinearity NLf of a function f is
the minimum Hamming distance between f and an affine
function.

Example 2.3. f = x1x2x3x4 has nonlinearity 1, since
converting the single 1 to a 0 in its truth table representa-
tion creates the truth table representation of the constant 0
function, which is affine. g = x1x2 ⊕ x3x4 has a distance
6 or 10 from any affine function. Thus, its nonlinearity is
6. (End of Example)

Definition 2.5. Let f be a Boolean function on n-variables,
where n is even. f is a bent function if its nonlinearity is
maximum among n-variable functions.

Example 2.4. Rothaus [15] showed that bent functions
have nonlinearity 2n−1−2

n
2−1. Thus, f = x1x2x3x4 is not

bent (NLf = 1), and g = x1x2⊕x3x4 is bent (NLg = 6).
(End of Example)

The property of “bentness” depends on the function’s
truth table representation. However, another representation
provides alternative insight into bentness and allows a
reduction in the number of functions that must be searched
during bent function discovery.

Definition 2.6. The algebraic normal form (ANF) of a
function f is f =

∑
a∈F2 cax

a1
1 xa2

2 . . . xan
n , where

∑
is

the exclusive OR sum, a = (a1, a2, . . . , an), ca, ai ∈ F2,
x0

i = 1, and x1
i = xi. ANF = (c0 c1 . . . c2n−1) is the

ANF representation of f .

Example 2.5. f = x1x2x3x4 has the ANF f =
x1x2x3x4 and the ANF representation ANF =
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1). g = x1x2 ⊕ x3x4 has the

ANF g = x1x2 ⊕ x3x4 and the ANF representation
ANF = (0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0). (End of Example)

Definition 2.7. The degree of a product term is the
number of variables in that term. The degree of a function
f is the maximum of the degrees among the product terms
in the ANF of f .

Example 2.6. f = x1x2x3x4 has degree 4 and g = x1x2⊕
x3x4 has degree 2. (End of Example)

Definition 2.8. Functions f and h belong to the same
affine class if and only if f = h⊕ a, where a is an affine
function.

Example 2.7. f = x1x2x3x4, a non-bent function, belongs
to an affine class of 32 functions. g = x1x2 ⊕ x3x4, a
bent function, belongs to an affine class of 32 functions.

(End of Example)

Certainly, each affine class contains the same number
of functions, namely 2n+1. Also, all functions in the same
affine class as a non-affine function f have the same
degree.

Definition 2.9. A function f is homogeneous of degree d
if and only if all terms in the ANF of f have degree d.

Example 2.8. f = x1x2x3x4 is homogeneous of degree
4, and g = x1x2 ⊕ x3x4 is homogeneous of degree 2.

(End of Example)

Xia, Seberry, Pieprzyk, and Charnes [20] considered
homogeneity in the context of bent functions and showed
the next result.

Theorem 2.1. When n > 6, no n-variable homogeneous
bent function has degree n

2 .

Because of f = x1x2 ⊕ x3x4, Theorem 2.1 does not
hold for n = 4. Qu, Seberry, and Pieprzyk [14] found 30
homogeneous 6-variable bent functions of degree 3, and so,
Theorem 2.1 does not hold for n = 6. Therefore, from [14],
[20], for n > 6, degree-n

2 n-variable bent functions exist,
but none are homogeneous. More recently, Meng et al. [11]
showed (purely combinatorially) that, for any nonnegative
integer k, there exists a positive integer N , such that for
n ≥ N , there do not exist 2n variable homogeneous bent
functions having degree n−k or more, where N is the least
integer satisfying 2N−1 >

(
N+1

0

)
+

(
N+1

1

)
+ · · ·+ (

N+1
k+1

)
.

3. Architecture of Bent Function Enumerator

A reconfigurable computer allows one to adapt the
architecture to the problem. Fig. 1 shows the architecture
to enumerate bent functions based on the ANF of the
tested functions. This and other variations yield the data
we present later. In all cases, a counter was used to



enumerate prospective functions. This is shown on the left.
This is applied to a block labeled Transeunt Triangle. In
this case, the counter enumerates ANFs; each bit of the
counter determines the presence or absence of a term in the
ANF. The transeunt triangle produces the corresponding
truth table. This is then applied to a block that computes
the function’s nonlinearity, NL. If NL is maximum, the
function is bent, and it is stored.

NL

Maximum

NL?
Store

Nonlinearity

Transeunt

Triangle

C
o
u
n
ter

Truth

Table
ANF

Yes

Fig. 1. Bent function enumeration circuit

In the SRC-6 reconfigurable computer, this circuit is
implemented on a Xilinx Virtex2 Pro FPGA. It is pipelined
and runs at 100 MHz. Specifically, one function is tested
every clock cycle. We used this to enumerate all 6-variable
bent functions [16]. If we had to enumerate all 226

=
1.85 × 1019 6-variable functions, this would take 5,849
years. However, Rothaus [15] showed that no bent function
has degree greater than n

2 . By eliminating functions with
degree greater than n

2 , it is only necessary to enumerate
2(6

3)+(6
2)+(6

1)+(6
0) = 242 functions. A function in an affine

class is bent if and only if all functions in the same affine
class are bent. As a result, the number of bent functions is
found by multiplying the number of affine classes by the
number of functions in each class, 2(6

1)+(6
0) = 27 = 128.

The number of affine classes with degree 3 or less is
2(

6
3)+(6

2) = 235. At one class (function) per 100 MHz clock
period, this enumeration takes only 5.7 minutes plus 0.5
minutes for data transfer for a total of 6.2 minutes. That
is, by enumerating only the affine classes corresponding to
functions of degree 3 or less, we achieve a reduction of
1

229 = 1
536,870,912 . However, this requires that we quickly

convert between the ANF of a function and its truth table.
For this, we need the Transeunt Triangle of Fig. 1, which
we discuss in the next section.

Fig. 2 shows the circuit that realizes the Nonlinearity
block of Fig. 1. The truth table representation of the
function f is applied on the left to 2n+1 sets of exclusive
OR gates to compute 2n+1 distance vectors. The number
of 1’s in these vectors is the distance from f to each
affine function. The Ones Count circuit produces a binary
number that is the distance between f and an affine

function. Then, a Minimum circuit computes the overall
minimum distance. This is the nonlinearity NL.
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Fig. 2. Nonlinearity circuit

Both the Ones Count and the Minimum circuit in
Fig. 2 are trees. Fig. 3 shows that, in the case of the
Ones Count circuit, adders of various sizes form the
circuit. Fig. 4 shows that, in the case of the Minimum
circuit, two-input one-output minimum circuits are used.
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Fig. 3. Ones Count circuit

The part of the circuit in Fig. 1 that has the ANF as input
and the ”store” signal as output is combinational. However,
its delay is larger than the SRC-6’s 100 MHz clock period,
and so, it is pipelined. For n = 6, the pipeline stages are
shown in Table 1.

TABLE 1. Function of each pipeline stage

Stage Circuit Description
1 Transeunt Triangle (Fig. 1)
2 EXOR gates (Fig. 2)
3 Ones Count (Figs. 2 & 3) 16 bits ⇒ 4 partial sums
4 Ones Count (Figs. 2 & 3) 4 partial sums ⇒ 1 sum out
5 Minimum (Figs. 2 & 4) 128 words in ⇒ 32 words out
6 Minimum (Figs. 2 & 4) 32 words in ⇒ 8 words out
7 Minimum (Figs. 2 & 4) 8 words in ⇒ 2 words out
8 Minimum (Figs. 2 & 4) 2 words in ⇒ 1 word out
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Fig. 4. Minimum circuit
All of this is implemented on the FPGA and is described

in Verilog. The counter that produces the ANF in Fig. 1
is implemented in C code that is compiled into a circuit
on the FPGA. This and overhead circuitry require 6 more
pipeline stages. Therefore, there are a total of 14 stages.

As discussed earlier, there are 235 = 3.4 × 1010

iterations. Therefore, the 14-clock latency is miniscule in
comparison to the total computation time. Even reducing
the latency to 0 (no pipeline) would yield no perceptible
reduction in computation time. The above discussion ap-
plies to the bent function enumeration that is described in
Section 5.2. Other enumerations, such as the distribution
of nonlinearity of 8-variable rotation symmetric Boolean
functions described in Section 5.4, for example, correspond
to somewhat different circuits (e.g. do not use the transeunt
triangle). However, the same conclusion holds; the latency
has an imperceptible affect on the computation time.

An examination of Figs. 1-4 reveals why a reconfig-
urable computer is much more efficient than a conven-
tional computer in computing bent Boolean functions. The
Ones Count circuit requires many small adders that can be
used simultaneously. An FPGA can realize these, albeit at
an increased delay, compared to a conventional computer.
A conventional computer has only a few large wordwidth
adders. The large wordwidth is not used efficiently. Simi-
larly, the Minimum circuit requires many comparators that
can be used simultaneously on an FPGA, but are much less
abundant on a conventional computer.

4. The Transeunt Triangle

4.1. Definition

Green [9] and others [2], [3], [4], [8], [19] propose the
transeunt triangle as a means to derive the ANF from the

truth table of a given function and, in so doing, produce
compact exclusive OR sum-of-products circuits. In this
paper, we show the benefit of the transeunt triangle in
a computational application. Not only can the ANF be
computed from the truth table, but the truth table can be
computed from the ANF by using the same algorithm. This
yields a significant computational advantage.

Definition 4.10. The transeunt triangle∗ is a set of
2n − 1 rows of adjacent 2-input 1-output exclusive-OR
gates, where adjacent exclusive-OR gates connect to the
same point. The input is a set of 2n binary values that
applies to the first (bottom) row of the triangle. That is, the
inputs connect to a row of 2n − 1 adjacent exclusive-OR
gates, whose outputs connect to a row of 2n − 2 adjacent
exclusive-OR gates, etc.. The apex of the transeunt triangle
is a row of just one exclusive-OR gate. The output of the
transeunt triangle consists of the leftmost input bit and
the outputs of the leftmost gates in each row. The inputs
are indexed by the binary tuples 00 . . . 000, 00 . . . 001,
00 . . . 010, . . ., and 11 . . . 111 from left to right. Similarly,
the outputs are indexed from the lower left corner to the
apex by the binary tuples 00 . . . 000, 00 . . . 001, 00 . . . 010,
. . ., and 11 . . . 111.

Example 4.9. Fig. 5a, shows the transeunt triangle for
n = 3. In this case, there are eight inputs and eight outputs.

TABLE 2. Example transeunt triangle in/out

x1x2x3 = 000 001 010 011 100 101 110 111
Output ANF Repr. = (0 1 1 0 1 0 0 0)
Output Expression x3 ⊕ x2 ⊕ x1

Input TT Repr.= (0 1 1 0 1 0 0 1)
Input Expression x̄1x̄2x3 ∨ x̄1x2x̄3 ∨ x1x̄2x̄3 ∨ x1x2x3

Output TT Repr.= (0 1 1 0 1 0 0 0)
Output Expression x̄1x̄2x3 ∨ x̄1x2x̄3 ∨ x1x̄2x̄3

Input ANF Repr. = (0 1 1 0 1 0 0 1)
Input Expression x3 ⊕ x2 ⊕ x1 ⊕ x1x2x3

Table 2 shows an example of the output values for
given input values. Specifically, if the input truth table
representation, TT = (0 1 1 0 1 0 0 1), which corresponds
to the minterm canonical form x̄1x̄2x3∨x̄1x2x̄3∨x1x̄2x̄3∨
x1x2x3, is applied to the bottom, then the left side of
the transeunt triangle corresponds to the output ANF
representation of this function, ANF = (0 1 1 0 1 0 0 0),
which is x3⊕x2⊕x1. Conversely, Table 2 also shows that
if the input ANF representation, ANF = (0 1 1 0 1 0 0 1),
is applied to the bottom, then the truth table representation
of that function, TT = (0 1 1 0 1 0 0 0), is produced on the
left side of the transeunt triangle. (End of Example)

∗. Green [9] and others [4] define the transeunt triangle to be the logic
values at the inputs and outputs of the 2-input 1-output exclusive-OR
gates. We define it to be a circuit of exclusive-OR gates.



4.2. The Transeunt Triangle Proof

a) Full Transeunt Triangle b) Reduced Transeunt Triangle

Fig. 5. Comparing the full and reduced transe-
unt triangle for n = 3.

Green [9] did not prove that the transeunt triangle con-
verts a truth table representation to an ANF representation.
We do so now. The following result from [10, p. 68] will
be used in our proof.

Theorem 4.2 (Lucas). Let p be a prime number, and two
integers represented in base p, namely n = nsp

s + · · · +
n1p

1+n0 and r = rsp
s+· · ·+r1p

1+r0, with 0 ≤ ni, ri ≤
p− 1. Then,

(
n

r

)
≡

(
ns

rs

)
· · ·

(
n1

r1

)(
n0

r0

)
(mod p).

The main result of this section is as follows.

Theorem 4.3. If the input to the transeunt triangle is the
truth table representation of an n-variable function f , then
the output is the ANF representation of f . Conversely, if the
input to the transeunt triangle is the ANF representation
of an n-variable function f , then the output is the truth
table representation of f .

Proof: The second statement follows from the first because
the logic values in the transeunt triangle are unchanged if
all exclusive-OR gates are rotated 120 degrees clockwise
(thus exchanging the input with the output). We prove the
first statement by induction.

Fig. 6a shows that the first statement is true for all
functions on n = 1 variable.

Assume the first statement is true for n, and consider
an n + 1-variable transeunt triangle. Fig. 6b shows that
there are two n-variable transeunt triangles embedded in
this transeunt triangle. Applied as an input to the lower
one is f0→x1 , shown as f0 in Fig. 6b. By the inductive
assumption, the output of this transeunt triangle is the ANF
representation of f0→x1 .

We now show that f0→x1⊕f1→x1 is applied as an input
to the upper transeunt triangle. Let α be an assignment of
values to x2, x3, . . ., and xn. Then, each input to the upper
triangle is driven by a (2n−1+1)×(2n−1+1)×(2n−1+1)

0 0 

0

 f = 0 

 f = 0 
0 1

1

 f = x1

 f = x1

1 1

0

 f = 1 

 f = 1 

f = 1 x1

1 0 

1

 f = x1

b) n+1-Variable Transeunt 

Triangle Decomposition

a) Transeunt Triangles of All 

1-Variable Functions 

n-variable

transeunt

triangle

n-variable

transeunt

triangle

f1

f0  f1

f0

f0  f1

f0

Fig. 6. Transeunt triangle composition

transeunt triangle whose inputs assignments range from 0α
through 1α. This is shown in Fig. 6b as a dotted-line trian-
gle. For example, the left input is driven by a transeunt tri-
angle whose 2n−1+1 inputs are 00 . . . 000, 00 . . . 001, . . .,
01 . . . 111, and 10 . . . 000 where α = 0 . . . 000. Consider
one triangle, and index its inputs by i, for 0 ≤ i ≤ 2n−1.
The output of this triangle is the exclusive-OR of some
number of its inputs. The number of times an assignment
appears in the exclusive-OR expression of the inputs is
the number of paths from that input to the output. This
is just

(
2n−1

i

)
. For i = 0 and i = 2n−1,

(
2n−1

i

)
= 1; i.e.

there is exactly one path to the triangle’s output, and these
two inputs appear once in the exclusive-OR expression.
Consider i, such that 0 < i < 2n−1. We use Theorem 4.2.

Since n = 2k−1, ni = 0 for all i, except that nk−1 = 1.
For 0 < r < n = 2k−1, there is at least one j such
that

(
nj

rj

)
=

(
0
1

)
= 0. Thus, for 0 < r < n = 2k−1,(

2k−1

r

) ≡ 0 (mod 2). Thus, the number of paths from any
assignment of values in the truth table input to the root is
even. It follows that the only terms that occur are 0α and
1α. We can conclude, therefore, that the input to the upper
transeunt triangle in Fig. 6b is the truth table representation
of f0→x1 ⊕ f1→x1 , shown in this figure as f0 ⊕ f1.

By the inductive hypothesis, the output of the upper
transeunt triangle is the ANF representation of f0→x1 ⊕
f1→x1 . The input to the n + 1-variable transeunt triangle
in Fig. 6b is the truth table representation of f0→x1 x̄1 ∨
f1→x1x1. The output is the ANF representation of f0→x1⊕
(f0→x1 ⊕f1→x1)x1, which represents the same function.

4.3. Reduced Transeunt Triangle

We note that, in Fig. 6b, only one of the dotted-
line triangles embeds a transeunt triangle (left dotted-line
triangle). That is, all but one of these triangles can be
replaced by a single 2-input 1-output exclusive-OR gate.
Doing this yields the reduced transeunt triangle. Fig. 5b
shows the reduced transeunt triangle for n = 3. In this case,
only 12 2-input 1-output exclusive-OR gates are needed,



compared to 28 gates for the full transeunt triangle.

Definition 4.11. A transeunt triangle is balanced if, for
every output f , the path length to all inputs on which f
depends is the same.

Example 4.10. Both the full and reduced transeunt trian-
gles are balanced. A transeunt triangle in which all outputs
are driven by a cascade of 2-input 1-output exclusive OR
gates is not a balanced transeunt triangle.

Lemma 4.1. The full transeunt triangle for n-variable
functions requires (2n−1)2n−1 2-input 1-output exclusive-
OR gates, while the reduced transeunt triangle requires
n2n−1, which is the smallest possible among all balanced
transeunt triangles using only 2-input 1-output exclusive-
OR gates.

Proof: The number of gates in the full transeunt triangle
is fn = 1 + 2 + 3 + · · ·+ 2n− 1 = 2n(2n−1)

2 . The number
of gates rn in the reduced transeunt triangle is given by
the recurrence relation rn = 2rn−1 + 2n−1, with initial
condition r1 = 1. Solving yields rn = n2n−1. The fact
that this is the smallest possible can be seen as follows.

Order the inputs so that they are in lexicographical
order, 00 . . . 00, 00 . . . 01, . . ., and 11 . . . 11, and construct
a minimal balanced transeunt triangle so that the outputs
are in lexicographical order. Each output bit indexed by
o1o2 . . . on is the exclusive OR of all input bits indexed
by i1, i2, . . . in, such that ij ≤ oj . For example, output
bit 00 . . . 00 is driven by input bit 00 . . . 00, and no gate
is needed. Output bit 00 . . . 01 is driven by a gate with
input bits 00 . . . 00 and 00 . . . 01, and one gate is needed.
Specifically, each output bit is the root of a full binary
tree, where the leaves are driven by input bits whose
index is the same as the output node’s index where some
1’s may be changed to 0’s. Input bit 00 . . . 00 is in the
binary tree of every output. Let wt(o1o2 . . . on) be the
Hamming weight of o1o2 . . . on (the number of oj’s that
are 1). Consider the number of nodes added to the transeunt
triangle constructed so far by output bit o1o2 . . . on. The
fewest nodes added are those in the binary tree associated
with output bit o1o2 . . . on that are along a path from the
output bit o1o2 . . . on to the input bit i1i2 . . . in, such that
ij = oj , for all 1 ≤ j ≤ n. None of these nodes are
part of the transeunt triangle constructed so far. Because
the transeunt triangle is balanced, there are wt(o1o2 . . . on)
added nodes. Because of the lexicographical order of the
inputs, all arcs from these nodes must go toward that part
of the transeunt triangle constructed so far.

It follows that the number of gates in a balanced
transeunt triangle is bounded below by the total number
of 1’s among all binary n-tuples, which is n2n−1.

In addition, the reduced transeunt triangle yields smaller

delay than the full transeunt triangle. It is straightforward
to show the following.

Lemma 4.2. The full transeunt triangle for n-variable
functions requires 2n − 1 gate delays, while the reduced
transeunt triangle requires n gate delays, where one gate
delay is the delay associated with a 2-input 1-output
exclusive-OR gate.

Since the full and reduced transeunt triangles are balanced,
the delay to an output from any of the inputs is identical.

5. Experimental Results

5.1. Speed-up Achievable by the Reconfig-
urable Computer

We compare the computation time required by an SRC-
6 reconfigurable computer with the time required by a
conventional computer. In our case, this is an Intel Xeon
processor running at 2.8 GHz., which is one of two
conventional microprocessors associated with the SRC-6.
The program, written in C, computes the nonlinearity of n-
variable functions, forming the distribution of functions to
nonlinearity. Similarly, the time it takes to do the same
calculation on the SRC-6 can be calculated since the
throughput is one function per clock period. The results
are shown in Table 3.

TABLE 3. Speed-up obtained by the SRC-6
reconfigurable computer

n PC Compute SRC-6 Compute Speed-up
Time Time Factor

(@2.8 GHz.) (@100 MHz)
2 6.38 µsec. 0.16 µsec. 39.9 ×
3 457.0 µsec. 2.56 µsec. 178.5 ×
4 0.388 sec. 655.4 µsec. 592.0 ×
5 25.338 hours 42.9 sec. 2,126.3 ×
6 39,807,788 years 5,840 years 6,805.9 ×
7 2.05× 1027 years 1.08× 1023 years 19,005 ×
8 2.28× 1066 years 3.67× 1061 years 62,111 ×

Speed-up factors range from 39.9× for n = 2 to
62,111× for n = 8. Note that the speed-up factor should
nearly quadruple for each increase in n by 1. On the PC, the
computation time doubles for each increase in n because
the number of affine functions doubles. Similarly, the
number of Ones Count operations also doubles. However,
on the SRC-6, the circuit size increases; the throughput
of one function per clock cycle remains the same. The
computation times for 2 ≤ n ≤ 5 shown in Table 3 were
achieved by programs that enumerated all 22n

n-variable
functions. The computation times for 6 ≤ n ≤ 8 for the PC
were obtained by running the C program over a fraction of



the functions and then prorating to compute the time had
all functions been enumerated. Although the computation
time on the SRC-6 for these values of n is much less,
it is still excessive, and this computation could not be
done. However, the speed-up applies when we enumerate
a sufficiently small subset of all functions. For example,
we enumerated all 6-variable functions with degree 3
or less and, in so doing, enumerated all bent functions
[16] using the theorem by Rothaus [15]. As discussed in
Section 3, this computation required 6.2 minutes. Had this
computation been done on the PC, it would have taken
6805.9× (5.7 mins.) longer or 27 days. We achieved the
62,111 speed-up associated with n = 8 in Table 3 in
computing the distribution of rotation symmetric functions,
as described in Section 5.4.

5.2. Number of 6-Variable Bent Functions

The computation described in the previous section veri-
fied Preneel’s [13] result that there are 5,425,430,528 bent
functions on 6 variables. We showed further, that 1,777,664
of these functions or 0.03% have degree 2. All of the
remaining have degree 3. Table 4 shows the resource usage
on the Xilinx Virtex2 Pro.

TABLE 4. Resources used to compute the
nonlinearity of 6-variable functions of degree
2 and 3

Number of Number/Total Percentage
Slice Flip-Flops 6,522/88,192 7%
4-Input LUTs 8,997/88,192 10%
Occupied Slices 6,450/44,096 14%

5.3. Nonlinearity of 6-Variable Homoge-
neous Boolean Functions

In the search for trends in Bent function properties,
it is useful to examine the nonlinearity distribution of
homogeneous Boolean functions. There are

∑6
k=0(2

(6
k) −

1) = 1, 114, 237 6-variable homogeneous functions. Fig.
7 shows the distribution of 6-variable homogeneous func-
tions to nonlinearity and degree, as computed on the FPGA.
The vertical axis shows the log2 number of functions. For
example, there are 63 homogeneous functions of nonlin-
earity 0 and degree 1; these are the linear functions.

The bent functions have nonlinearity 28, and Fig. 7
shows there are two different degrees. 13,888 have degree
2 and 30 have degree 3. The next largest nonlinearity is 23,
and again, functions exist with only degrees 2 and 3. For
degrees 3, 4, and 5, there is bell-like distribution across
nonlinearity. This information, when combined with the

same data for higher n, could lead to further reduction in
the number of test functions resulting in the ability to find
more bent functions without increasing computation time.

Fig. 7. Distribution of homogeneous 6-
variable functions by nonlinearity and degree

Table 5 shows the resource usage on the Xilinx Virtex2
Pro.

TABLE 5. Resources used to compute the
nonlinearity of 6-variable homogeneous func-
tions

Number of Number/Total Percentage
Slice Flip-Flops 7,959/88,192 9%
4-Input LUTs 12,335/88,192 13%
Occupied Slices 8,724/44,096 19%

5.4. Nonlinearity of 8-Variable Rotation
Symmetric Boolean Functions

Definition 5.12. A function f is rotation symmetric if and
only if, for any (x1, x2, . . . , xn) ∈ Fn

2 ,

f(x1, x2, x3, . . . , xn) = f(xn, x1, x2, . . . xn−1).

In a rotation symmetric function, “rotating” an assignment
of values to the variables leaves the function unchanged.
Rotation symmetric functions have interesting properties
[6] and there is evidence to suggest that this class is rich
in bent functions. It is conjectured [7] that the weight
and nonlinearity of a third degree homogeneous rotation
symmetric function are identical.

Fig. 8 shows the distribution of 8-variable rotation
symmetric functions to nonlinearity. This shows that more
rotation symmetric functions have nonlinearity around 110
than other values. Relatively few have low nonlinearity
(0 – 75) or high nonlinearity (> 113). This distribution
resembles the distribution of nonlinearity to all functions,
which is known only for n = 4 [1]. Table 6 shows the
resource usage on the Xilinx Virtex2 Pro.
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TABLE 6. Resources used to compute the
nonlinearity of 8-variable rotation symmetric
functions

Number of Number/Total Percentage
Slice Flip-Flops 9,531/88,192 10%
4-Input LUTs 8,850/88,192 10%
Occupied Slices 8,540/44,096 19%

6. Concluding Remarks

We show that the reconfigurable computer is an effective
research tool in bent function discovery. Because we adapt
the architecture to the problem, we achieve significant
efficiencies. Indeed, we show that a reconfigurable com-
puter can achieve better than a 60,000× speed-up over a
conventional computer for 8-variable functions. The imple-
mentation of the transeunt triangle is beneficial in reducing
the number of functions through which we must sieve.
We show that the reduction is better than 500,000,000
to 1 for 6-variable functions. Although the transformation
produced by the transeunt triangle is generally accepted
as correct, no proof is known. We provide such a proof.
This proof yields the reduced transeunt triangle, which
produces the identical transformation of the full transeunt
triangle, but with significantly fewer gates and less delay.
We show examples of results obtained from this tool. For
other results, see Schneider [16] and Shafer [17].

Nonlinearity is only one type of cryptographic property.
Other types include strict avalanche criterion, propagation
criterion, correlation immunity, and algebraic immunity.
There is significant promise in exploiting the efficiencies
of a reconfigurable computer to make new discoveries in
these important topics.
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